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Abstract

In this paper, we present a new technique for bounding local Rademacher
averages of function classes induced by a loss function and a reproducing ker-
nel Hilbert space (RKHS). At the heart of this technique lies the observation
that certain expectations of random entropy numbers can be bounded by the
eigenvalues of the integral operator associated to the RKHS. We then work out
the details of the new technique by establishing two new oracle inequalities for
support vector machines, which complement and generalize previous results.
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1 Introduction

Recent results [2, 14, 16, 19] establishing learning rates for support vector machines
(SVMs) use Talagrand’s inequality together with local Rademacher averages, see
[1], to bound the estimation error, i.e., the statistical error of these learning meth-
ods. This approach requires to bound the local Rademacher averages of relatively
complicated function classes that depend on both the loss function and the reproduc-
ing kernel Hilbert space (RKHS) used in the SVM. For this task, two approaches
currently exists: The first one, which goes back to Mendelson [6] and is applied
in [16, 19], uses Dudley’s chaining together with uniform covering numbers of the
RKHS, while the second one, applied in [2], uses another result by Mendelson [8] to
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bound the Rademacher averages by the eigenvalues of the integral operator associ-
ated to the kernel of the RKHS. Currently, both approaches have advantages and
disadvantages. For example, compared to uniform covering numbers, the eigenvalues
are closer related to the learning problem at hand and provide, in general, a weaker
notion of the complexity of the RKHS. In particular, the compactness of the input
space is, in general, superfluous when using eigenvalues instead of uniform covering
numbers. On the other hand, the analysis based on the eigenvalues is substantially
more involved, and so far it is unclear whether, apart from a relatively simple case
considered in [2], it can be carried out for more general settings. In addition, it
remains so far unclear whether the analysis based on eigenvalues produces artifacts,
such as the need of a quite restrictive noise assumption on the data-generating dis-
tribution. Consequently, it seems fair to say that currently neither of these two
approaches are silver bullets.

In this paper, we present a new technique for bounding the local Rademacher
averages, which combines the advantages of both approaches and simultaneously
lacks their disadvantages. At the heart of our approach lies the simple observation
that in Dudley’s chaining argument one can use the functional inverse of covering
numbers, i.e., entropy numbers. As a result, see Theorem 3.5, one can then bound
the local Rademacher averages by the expectation of random entropy numbers.
In the past, see e.g. [17], these in turn have been bounded by uniform entropy (or
covering) numbers, which led to the first approach discussed above. To overcome the
disadvantages of this approach, we use a result that bounds these random entropy
numbers by the eigenvalues of the associated integral operator. In a nutshell, our new
technique thus uses certain properties of entropy numbers to go from complicated
functions classes considered in local Rademacher averages to scaled balls of RKHSs,
and then uses specific features of RKHSs to make the step from random entropy
numbers to eigenvalues.

We illustrate how to use this new technique by deriving two new oracle inequal-
ities for SVM type methods, which both use eigenvalues estimates as a complexity
measure for the RKHSs. To be more precise, the first oracle inequality considers
classical SVMs, while the second one deals with an SVM type approach that uses
a lighter regularization term. We further show that both results nicely complement
and generalize corresponding findings from [14, 2]. In particular, it turns out that
the new oracle inequalities combine the advantages of the two approaches discussed
above while simultaneously lacking their disadvantages.

The rest of this paper is organized as follows. In Section 2, we first explain our
new approach in more detail and provide some results that connect random entropy
numbers to eigenvalues. We then present and discuss the two oracle inequalities
mentioned above. The proofs of these inequalities can be found in Section 3. Finally,
we have attached an appendix that contains the relatively elegant, yet unusual proof
for the connection between random entropy numbers and eigenvalues.

2 Main Results

In the following, X always denotes a measurable space that is equipped with some
probability measure µ. Moreover, H denotes a RKHS over X, whose kernel k :
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X ×X → R is assumed to be measurable. Let us further assume that it satisfies

‖k‖L2(µ) :=
(∫

X
k(x, x) dµ(x)

)1/2

< ∞ .

Then it is well-known, see e.g. [13, Chapter 4.3.], that H consists of square integrable
functions and the inclusion id : H → L2(µ) is continuous with ‖id : H → L2(µ)‖ ≤
‖k‖L2(µ). Moreover, the integral operator Tk,µ : L2(µ) → L2(µ) defined by

Tk,µg(x) :=
∫

X
k(x, x′)g(x′)dµ(x′) , g ∈ L2(µ), x ∈ X , (1)

is known, see e.g. again [13, Chapter 4.3.], to be self-adjoint, positive, and com-
pact. In addition, its ordered sequence (with geometric multiplicities) of eigenvalues
(λi(Tk,µ))i≥1 is summable, i.e.,

∞∑
i=1

λi(Tk,µ) < ∞ .

As already mentioned in the introduction, it has been shown in [2] that the speed
of convergence of limi→∞ λi(Tk,µ) = 0 can be used to determine learning rates for
SVMs using the hinge loss. In particular, [2] showed that faster rates of convergence
result in faster learning rates. Of course, the behavior of the eigenvalues depends,
in general, not only on the kernel k but also on the measure µ, which for learning
problems equals the marginal distribution PX of the data-generating distribution P
on X×Y , where Y ⊂ R is the set of possible labels. Therefore, the result in [2] seems
to make it possible to identify distributions PX for which SVMs learn particularly
fast. Unfortunately, however, the results in [2] only hold under a restrictive form of
the sharpest Tsybakov noise assumption, see below for the details, and hence they
cannot be used to explain the learning behavior of SVMs in realistic settings.

Another, more classical way to determine learning rates for SVMs and other learn-
ing algorithms is based on the concept of covering numbers, or, as observed in [18],
on entropy numbers, which are the “inverse” of covering numbers. Let us only re-
call the definition of entropy numbers since they have, as we will describe below,
a tight connection to eigenvalues. To this end, let E and F be Banach spaces and
S : E → F be a bounded linear operator. Then the (dyadic) entropy numbers ei(S),
i ≥ 1, of S are defined by

ei(S) := inf
{

ε > 0 : ∃x1, . . . , x2i−1 ∈ SBE such that SBE ⊂
2i−1⋃
j=1

(
xj + εBF

)}
,

where BE and BF denote the closed unit balls of E and F , respectively. Clearly, S
is compact if and only if limi→∞ ei(S) = 0, and the speed of this convergence can
be considered as a measure on how compact S is. Now, if X is a compact space
and k is continuous, then it is well-known that id : H → C(X) is compact, and
the convergence of the corresponding entropy numbers can be used to determine
learning rates for SVMs, see [14, 16, 19]. Compared to [2], these learning rates hold
for less restrictive assumptions on P , and are thus more widely applicable. On the
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downside, however, the entropy numbers of id : H → C(X) are independent of PX ,
and therefore they do not give us the opportunity to identify marginal distributions
PX for which SVMs learn particularly fast.

As we will see in the proofs of our main results, it is, however, not necessary to
use C(X)-entropy numbers in [14]. Instead, it will turn out that it suffices to use
expectations of random entropy numbers. More precisely, if for given DX ∈ Xn we
write DX for the corresponding empirical measure, then the behavior of

EDX∼PX
ei(id : H → L2(DX)) , i ≥ 1 , (2)

can be used to determine oracle inequalities for SVMs, and thus learning rates.
Unfortunately, however, expectations of random entropy numbers are known to be
notoriously hard to deal with, which to some extend may explain why the expecta-
tion is often replaced by a supremum, see e.g. [17]. Obviously, the latter, presumably
sub-optimal, approach could be avoided, if we could “move” the expectation inside
the entropy numbers, that is, if we could consider ei(id : H → L2(µ)), instead.
Surprisingly, the following result shows that this is indeed possible:

Theorem 2.1 Let k be a measurable kernel on X with separable RKHS H and µ
be a probability measure on X such that ‖k‖L2(µ) < ∞. Assume that there exist
constants 0 < p < 2 and a ≥ 1 such that

ei(id : H → L2(µ)) ≤ a i
− 1

p , i ≥ 1 . (3)

Then there exists a constant cp > 0 only depending on p such that

ED∼µnei(id : H → L2(D)) ≤ cp a i
− 1

p , i, n ≥ 1.

The proof of the theorem above yields constants cp with cp →∞ for p → 0, but so
far, it is unclear whether this is an artifact of our techniques. Moreover, the theorem
clearly fails to provide a tight relationship, if ei(id : H → L2(µ)) decreases with a
rate faster than polynomial. For example, for a Gaussian RBF kernel with fixed
width, it is known from e.g. [20] that the corresponding entropy numbers enjoy
a certain exponential decay. In this case, Theorem 2.1 shows that the expected
random entropy numbers decay with arbitrarily fast polynomial rate, but it fails to
answer the question whether the expected random entropy numbers enjoy the same
exponential decay. On the other hand, for SVMs based on Gaussian RBFs with
flexible width, the sharpest existing statistical analysis in [16] uses bounds on the
entropy numbers that only decrease polynomially but enjoy a better dependence on
the used width of the kernel. Clearly, for such bounds, Theorem 2.1 produces the
desired translation since the constant a, which in the Gaussian case depends on the
kernel width, remains unchanged modulo the constant cp.

Theorem 2.1 can be restated in terms of Lorentz sequence norms, see e.g. Chapter
1.5 in [3]. To do so, recall that for p ∈ (0,∞) and a decreasing, non-negative
sequence (ai) the Lorentz (p,∞)-norm is defined by

‖(ai)‖p,∞ := sup
i≥1

i
1
p ai .
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Consequently, Theorem 2.1 states that, for all 0 < p < 2, there exists a constant
cp > 0 such that∥∥(

ED∼µnei(id : H → L2(D))
)∥∥

p,∞ ≤ cp

∥∥(
ei(id : H → L2(µ))

)∥∥
p,∞ .

The following lemma shows that a similar relation holds between the eigenvalues
and the L2(µ)-entropy numbers.

Lemma 2.2 Let k be a measurable kernel on X with separable RKHS H and µ be
a probability measure on X such that ‖k‖L2(µ) < ∞. Then for all 0 < p < 1 there
exists a constant cp > 0 only depending on p such that

cp

∥∥(
e2
i (id : H → L2(µ))

)∥∥
p,∞ ≤

∥∥(λi(Tk,µ))
∥∥

p,∞ ≤ 4
∥∥(

e2
i (id : H → L2(µ))

)∥∥
p,∞ .

The lemma above basically states that the eigenvalues and the squared L2(µ)-
entropy numbers have the same asymptotic behavior as long the eigenvalues do not
decrease faster than polynomial. In particular, if we assume

λi(Tk,PX
) ≤ a

1
p i
− 1

p , i ≥ 1, (4)

for some constants a ≥ 1 and 0 < p < 1, then Lemma 2.2 yields a constant cp > 0
such that

ei(id : H → L2(µ)) ≤ cp a
1
2p i

− 1
2p , i ≥ 1,

and hence Theorem 2.1 shows

ED∼µnei(id : H → L2(D)) ≤ c̃p a
1
2p i

− 1
2p , i ≥ 1, (5)

where c̃p is another constant only depending on p. As already indicated above, such
an estimate can be used to bound the local Rademacher averages occurring in a
statistical analysis based on Talagrand’s inequality. Consequently, the implication
from (4) to (5) provides a simple device to incorporate eigenvalue estimates into an
analysis that enjoys the relative simplicity of the entropy number approach.

To illustrate this approach, we now present two resulting oracle inequalities for
SVMs. To this end, we fix a nonempty compact set Y ⊂ [−1, 1] and a probabil-
ity measure P on X × Y . Moreover, let H be a separable RKHS with bounded
measurable kernel k satisfying

‖k‖∞ ≤ 1 .

In addition, L : Y ×R → [0,∞) always denotes a continuous function that is convex
in the second variable and satisfies L(y, 0) ≤ 1 for all y ∈ Y . Moreover, we assume
that L is Lipschitz continuous in the sense of∣∣L(y, t1)− L(y, t2)

∣∣ ≤ |t1 − t2| , y ∈ Y, t1, t2 ∈ R. (6)

In particular, we are interested in the hinge loss, which for Y := {−1, 1} is defined
by L(y, t) := max{0, 1−yt}, y ∈ Y , t ∈ R. The function L will serve as loss function
and consequently let us recall the associated L-risk

RL,P (f) := E(x,y)∼P L(y, f(x)),
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where f : X → R is a measurable function. Note that our assumptions immediately
give RL,P (0) ≤ 1. Furthermore, the minimal L-risk is denoted by R∗

L,P , i.e.

R∗
L,P := inf{RL,P (f) | f : X → R measurable},

and a function attaining this infimum is denoted by f∗L,P . In the following we always
assume that there exists at least one such f∗L,P . In addition, if there happens to be
more than one such f∗L,P , we assume that we have picked one fixed such function.

Recall that support vector machines, see [4, 10, 13], are based on the optimization

fP,λ := arg min
f∈H

(
λ‖f‖2

H +RL,P (f)
)

, (7)

where λ > 0 is a user-defined regularization parameter and the function fP,λ is
known to be uniquely determined, see [13, Chapter 5.1]. Note that if we identify
a training set D = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n with its empirical measure,
then fD,λ denotes the empirical estimator of the above learning scheme.

One way to describe the approximation error of SVMs is the 2-approximation
error function

A2(λ) := λ‖fP,λ‖2
H +RL,P (fP,λ)−R∗

L,P , λ > 0,

which is discussed in some detail in [15] and Chapter 5.4 of [13]. In particular,
the 2-approximation error function has a tight connection to the more classical
approximation errors of the scaled unit balls λ−1BH . For a precise statement in this
direction we refer to [13, Exercise 5.11].

With these preparations we can now formulate our first oracle inequality.

Theorem 2.3 Let L, H, and P satisfy the assumptions above. Moreover, assume
that there are constants a ≥ 1 and 0 < p < 1 such that

EDX∼P n
X

ei(id : H → L2(DX)) ≤ a
1
2p i

− 1
2p , i ≥ 1 . (8)

In addition, suppose that for all 0 < λ ≤ 1 and all f ∈ λ−
1
2 BH we have

EP

(
L ◦ f − L ◦ f∗L,P )2 ≤ c

(
‖f‖∞ + 1

)2−ϑ (
EP (L ◦ f − L ◦ f∗L,P )

)ϑ (9)

for some constants c ≥ 1 and ϑ ∈ [0, 1]. Then there exists a constant K ≥ 1 only
depending on c and p such that for all 0 < λ ≤ 1, ε ∈ (0, 1], τ ≥ 1, and n ≥ τ
satisfying ε ≥ A2(λ) + λ and

ε ≥ Kλ−1 max
{(a

n

) 2
2−ϑ+ϑp

,
(a

n

) 2
1+p

,
( τ

n

) 2
2−ϑ

}
,

we have

Pn
(
D ∈ (X × Y )n : RL,P (fD,λ)−R∗

L,P < A2(λ) + ε
)
≥ 1− e−τ .
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In principle it is possible to derive a value for the constant K from the proof of
Theorem 2.3. However, we strongly believe that the proof does not provide a sharp
value, and thus we omitted a detailed analysis.

To illustrate the theorem above let us now assume that L is the hinge loss. More-
over, assume that P is a distribution with Tsybakov noise exponent q ∈ [0,∞], i.e.,
there exists a C > 0 such that for η(x) := P (y = 1|x), x ∈ X, and all t > 0 we have

PX

(
{x ∈ X : |2η(x)− 1| ≤ t}

)
≤ (C · t)q . (10)

When q > 0, it follows from [16, Lemma 6.6] that the assumption (9) is satisfied
with ϑ = q

q+1 and c = Cq + 2. Moreover, it is simple to show the same is true when
q = 0 but with c = 5. Let us further assume that the sample size n satisfies n ≥ aτ .
Some easy estimates then show that the conditions on ε in Theorem 2.3 are satisfied
if

ε ≥ A2(λ) + λ + Kλ−1
(aτ

n

) 2(q+1)
q+pq+2

, (11)

that is, we have

RL,P (fD,λ)−R∗
L,P < 2A2(λ) + λ + Kλ−1

(aτ

n

) 2(q+1)
q+pq+2 (12)

with probability Pn not smaller than 1− e−τ . Now note that (8) is implied by the
assumption

sup
DX∈Xn

ei(id : H → L2(DX)) ≤ a
1
2p i

− 1
2p , i ≥ 1,

which was imposed in [14, Theorem 2.1 & Example 2.4]. Besides this, however,
the oracle inequality in [14, Example 2.4] is identical to (12), and hence we see
that in this sense Theorem 2.3 generalizes the results from [14]. Moreover, the
implication (4) ⇒ (5) shows that the oracle inequality of Theorem 2.3 also holds
(modulo a constant depending only on p), if we replace the random entropy number
assumption (8) by the eigenvalue assumption (4). Under the latter condition, [2] has
also established an oracle inequality in the case that x 7→ η(x) is bounded away from
0, 1, and 1/2, that is, if a stronger version of (10) holds for q = ∞. However, their
result becomes more interesting if the regularization term ‖ · ‖2

H in (7) is replaced
by the lighter regularization ‖ · ‖H . Interestingly, our techniques can also be used to
derive an oracle inequality for such a regularization. To formulate the corresponding
result, we define the 1-approximation error function

A1(λ) := inf
f∈H

(
λ‖f‖H +RL,P (f)−R∗

L,P

)
, λ > 0, (13)

which is based on this lighter regularization. Again, it is possible to show that there
exists a unique minimizer f

(1)
P,λ of the objective function in (13). In the following,

we write f
(1)
D,λ if P is an empirical measure based on the sample set D. In other

words, f
(1)
D,λ is the decision function produced by an algorithm using the lighter

regularization. Moreover note that there is an intimate relationship between the
new function A1 and the 2-approximation error function. Indeed, [13, Exercise
5.11] can be used to show that, given a β ∈ (0, 1], the following two conditions are
equivalent:
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i) There exists a constant c > 0 such that A2(λ) ≤ cλβ for all λ > 0.

ii) There exists a constant c̃ > 0 such that A1(λ) ≤ c̃λ
2β

1+β for all λ > 0.

In fact, the relationship between the constants c and c̃ can also be worked out
modulo a universal constant, but for brevity’s sake we omit the details. Let us now
present our oracle inequality for this lighter type of regularization.

Theorem 2.4 Let L, H, and P satisfy the assumptions above. Moreover, assume
that both (8) and (9) are satisfied for some constants a ≥ 1, 0 < p < 1, c ≥ 1, and
ϑ ∈ [0, 1]. Then there exists a constant K ≥ 1 only depending on c and p such that
for all 0 < λ ≤ 1, τ ≥ 1, and n ≥ aτ satisfying

λ ≥ K
(aτ

n

) 1
2−ϑ+ϑp (14)

we have

Pn
(
D ∈ (X × Y )n : RL,P (f (1)

D,λ)−R∗
L,P < 2A1(λ) + λ

)
≥ 1− e−τ .

To illustrate this second oracle inequality, let us again assume that L is the hinge
loss, and that P satisfies Tsybakov’s noise assumption (10). Then assumption (14)
becomes

λ ≥ K
(aτ

n

) q+1
q+pq+2

, (15)

which for q = ∞ reduces to λ ≥ K(aτ
n )

1
1+p . Modulo constants, this is exactly

the result from [2], but without the need of η being bounded away from 0 and 1.
Moreover, unlike [2], our result holds for all q ∈ [0,∞], and hence it also provides a
solution of another open problem of [2].

Let us finally compare the learning rates resulting from Theorem 2.3 and 2.4. To
this end, we again restrict our considerations to the hinge loss L. In addition, we
assume that there exists constants c > 0 and β ∈ (0, 1] such that A2(λ) ≤ cλβ for

all λ > 0. A simple calculation then shows that choosing λn := n
− 2(q+1)

(q+pq+2)(β+1) in
(12) asymptotically minimizes (12) and the resulting learning rate is

n
− 2β(q+1)

(q+pq+2)(β+1) . (16)

On the other hand, for the lighter regularization, (15) shows that λn should asymp-

totically behave like n
− q+1

q+pq+2 , which, by the relationship between A2 and A1 men-
tioned above, again yields the learning rate (16). In other words, the exponent of the
regularization term does not have an effect on our learning rates, which seems rea-
sonable if one recalls the fact that the regularization path is also independent of the
exponent, see [13, Exercise 5.9]. We expect, that the same phenomenon holds, if one
considers general exponents in the regularization term. Corresponding calculations
should be straightforward but are clearly beyond the scope of this paper.

It is also worth mentioning that for the classical ‖ · ‖2
H -regularization, the optimal

choice of λ requires knowing p, q, and β, while for the lighter regularization, only
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p and q need to be known. Of course, from a practical point of view, this does not
make a big difference since typically q, and often also p, are not known, so that
λ needs to be determined by, e.g., cross-validation approaches. From a theoretical
point, however, it is interesting that for the lighter regularization the asymptotically
optimal λn is independent of the approximation error (function) not only for q = ∞,
as observed in [2], but also for q < ∞.

3 Proofs of the Oracle Inequalities

In order to prove the oracle inequalities we need to recall some results from [14]. To
this end, we assume in the following that q ∈ {1, 2} is fixed. We further define the
function Cλ : X × Y ×H → [0,∞) by

Cλ(x, y, f) := λ‖f‖q
H + L(y, f(x)) , x ∈ X, y ∈ Y, f ∈ H,

where λ > 0 is a regularization parameter. Note that this yields

E(x,y)∼P Cλ(x, y, f) = λ‖f‖q
H +RL,P (f) ,

and following the arguments of [13, Chapter 5.1] it is not hard to see that the latter
regularized risk not only has a unique minimizer if q = 2, but also in the case of
q = 1. To avoid notational overload we denote this minimizer in both cases by fP,λ,
that is, in the case q = 1 we now write fP,λ and fD,λ rather than f

(1)
P,λ and f

(1)
D,λ.

Moreover, we need the induced classes

G(λ) :=
{
Cλ ◦ f − Cλ ◦ fP,λ : f ∈ λ−1/qBH

}
, λ > 0 ,

where Cλ ◦ f := Cλ( · , · , f). Note that RL,P (0) ≤ 1 implies fP,λ ∈ λ−1/qBH

for all distributions P on X × Y , and hence the latter in particular holds for the
empirical solutions fD,λ. In other words, we have Cλ ◦ fD,λ − Cλ ◦ fP,λ ∈ G(λ) for
all D ∈ (X × Y )n.

Furthermore recall that the modulus of continuity of the class G(λ) was defined
by

ωP,n(G(λ), ε) := ED∼P n

(
sup

f∈G(λ),
EP f≤ε

|EP f − EDf |
)

,

where P is a probability measure on X × Y . With the help of this modulus, [14,
Theorem 3.1] establishes the following general oracle inequality

Theorem 3.1 Adopt the above notations for fixed q ∈ {1, 2} and λ > 0. Further-
more, assume that there exist constants b, B ≥ 0, β ∈ [0, 1], w,W ≥ 0, and ϑ ∈ [0, 1]
such that

‖g‖∞ ≤ b
(
EP g

)β + B (17)

and
EP g2 ≤

(
b
(
EP g

)β + B
)2−ϑ(

w
(
EP g

)ϑ + W
)

(18)
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for all g ∈ G(λ). Then for all n ≥ 1, τ ≥ 1 and ε > 0 satisfying

ε ≥ 3ωP,n(G(λ), ε) +

√
2τ(bεβ + B)2−ϑ(wεϑ + W )

n
+

2τ
(
bεβ + B

)
n

(19)

we have

Pn
(
D ∈ (X × Y )n : λ‖fD,λ‖q

H +RL,P (fD,λ) < Aq(λ) + ε
)
≥ 1− e−τ .

Let us now use the above general theorem to prove the two oracle inequalities
presented in the previous section.

The case q = 2

In the standard SVM case q = 2, the bounds (17) and (18) were guaranteed by [14,
Lemma 4.1] and [14, Lemma 4.2], respectively. For the sake of convenience we recall
both results:

Lemma 3.2 For 0 < λ ≤ 1, and f ∈ λ−
1
2 BH we define gf := Cλ ◦ f − Cλ ◦ fP,λ.

Then we have gf ∈ G(λ) and the following two bounds hold:

‖gf‖∞ ≤ 3
(

EP gf

λ

)1/2

+
(

A2(λ)
λ

)1/2

+ 2 ,

‖f‖H ≤
(

A2(λ) + EP gf

λ

)1/2

.

Lemma 3.3 Let P be a distribution on X×Y and suppose that there exist constants
c ≥ 1 and ϑ ∈ [0, 1] such that the variance bound assumption (9) is satisfied for some
0 < λ < 1 and all f ∈ λ−

1
2 BH . Then for all g ∈ G(λ) we have

EP g2 ≤ 16c

((
EP g

λ

)1/2

+
(

A2(λ)
λ

)1/2

+ 1
)2−ϑ(

(EP g)ϑ + 2Aϑ
2 (λ)

)
.

From these two lemmas it is easy to conclude that we may set β := 1/2, b :=
3λ−1/2, B := (A2(λ)

λ )1/2+2, w := 16c, and W := 32cAϑ
2 (λ) in Theorem 3.1. To apply

the latter, it thus remains to find an upper bound on the modulus ωP,n(G(λ), ε).
Our next goal is to establish such an upper bound if we have a bound on certain

random entropy numbers. Let us begin by recalling Rademacher averages. To this
end, we fix a probability space (Θ, C, ν), and a Rademacher sequence ε1, . . . , εn,
that is, a sequence of i.i.d. random variables εi : Θ → {−1, 1} satisfying ν(εi = 1) =
ν(εi = −1) = 1/2 for all i = 1, . . . , n. Now let Z be a non-empty set equipped
with some σ-algebra and L0(Z) be the corresponding set of all measurable functions
g : Z → R. Given a non-empty G ⊂ L0(Z), a Rademacher sequence ε1, . . . , εn, and
a finite sequence D := (z1, . . . , zn) ∈ Zn, the n-th empirical Rademacher average of
G is defined by

RadD(G, n) := Eν sup
g∈G

∣∣∣∣ 1n
n∑

i=1

εig(zi)
∣∣∣∣ .
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It is well-known that symmetrization, see e.g. [17], makes it possible to bound the
modulus of continuity by expected Rademacher averages. Namely we have

ωP,n(G(λ), ε) ≤ 2 ED∼P nRadD(Gε, n) , (20)

where
Gε := {g ∈ G(λ) : EP g ≤ ε} .

In view of Theorem 3.1 it thus suffices to find a bound on the expected Rademacher
averages of Gε. The classical way to obtain such a bound uses Dudley’s chaining
argument, see [5], [7], and Chapter 2.2 in [17], together with the covering numbers
of Gε with respect to L2(D). For our purposes, however, it is more convenient to
use entropy numbers instead of covering numbers. Fortunately, Dudley’s chaining
argument works with entropy numbers as well as with covering numbers, see [13,
Theorems 7.13 and 7.16]. In order to recall the latter result, we define the (dyadic)
entropy numbers of a subset A ⊂ H of a Hilbert space H by

ei(A,H) := inf
{

ε > 0 : ∃x1, . . . , x2i−1 ∈ A such that A ⊂
2i−1⋃
j=1

(
xj + εBH

)}
.

Now the following version of Dudley’s chaining whose proof can be found in Chap-
ter 7.3 of [13] bounds empirical Rademacher averages by entropy numbers.

Theorem 3.4 For every non-empty set G ⊂ L0(Z) and every finite sequence D :=
(z1, . . . , zn) ∈ Zn, we have

RadD(G, n) ≤
√

ln 16
n

( ∞∑
i=1

2i/2 e2i

(
G ∪ {0}, L2(D)

)
+ sup

g∈G
‖g‖L2(D)

)
.

Using Theorem 3.4 and an imposed bound on the average entropy numbers, the
following theorem provides a bound on expected Rademacher averages. Its proof
follows the ideas of [6] and can again be found in Chapter 7.3 of [13].

Theorem 3.5 Let G ⊂ L0(Z) be a non-empty set and P be a distribution on Z.
Suppose that there exist constants B ≥ 0 and σ ≥ 0 such that ‖h‖∞ ≤ B and
EP h2 ≤ σ for all h ∈ G. Furthermore, assume that for a fixed n ≥ 1 there exist
constants p ∈ (0, 1) and a ≥ B2p such that

ED∼P n ei(G, L2(D)) ≤ a
1
2p i

− 1
2p , i ≥ 1. (21)

Then there exist constants C1(p) > 0 and C2(p) > 0 depending only on p such that

ED∼P nRadD(G, n) ≤ max
{

C1(p) a
1
2 σ

1−p
2 n−

1
2 , C2(p) a

1
1+p B

1−p
1+p n

− 1
1+p

}
.

To apply this general result to the sets Gε we finally need the quantity

Λ2(ε, λ) := ε + A2(λ) + λ , ε > 0, λ > 0. (22)

Now the upper bound on the expected Rademacher averages reads as follows:

11



Lemma 3.6 Let n ∈ N, and assume that there are constants a ≥ 1 and p ∈ (0, 1)
such that

EDX∼P n
X

ei(id : H → L2(DX)) ≤ a
1
2p i

− 1
2p , i ≥ 1. (23)

Then there exists a constant cp > 0 depending only on p such that for all distributions
P on X × Y , all λ ∈ (0, 1], ε ∈ (0, 1], and all τε ≥ supg∈Gε

EP g2 we have

ED∼P nRadD(Gε, n) ≤ cp max
{

τ
1−p
2

ε

(
Λ2(ε, λ)

λ

) p
2 (a

n

) 1
2
,

(
Λ2(ε, λ)

λ

) 1
2 (a

n

) 1
1+p

}
.

Proof: Lemma 3.2 shows that for all f ∈ λ−1/2BH with gf := Cλ◦f−Cλ◦fP,λ ∈ Gε

we have

‖f‖H ≤
(

A2(λ) + ε

λ

)1/2

=: Λ .

Let us therefore write G̃ε := {λ‖f‖2
H + L ◦ f : f ∈ ΛBH} and H := {L ◦ f : f ∈

ΛBH}. Now observe that λ‖f‖2
H ≤ 2 for all f ∈ ΛBH , and hence the additivity of

the entropy numbers, see [3, page 21], and their quasi-injectivity, see [3, (1.1.3) &
(1.1.4)], together with the Lipschitz continuity of L yields

e2i−1

(
Gε, L2(D)

)
≤ 2e2i−1

(
G̃ε, L2(D)

)
≤ 2ei

(
[0, 2], | · |

)
+ 2ei

(
H, L2(DX)

)
≤ 22−i + 4ei

(
ΛBH , L2(DX)

)
for all i ≥ 1 and all D ∈ (X × Y )n. Averraging over D and using (23), we thus
obtain

ED∼P ne2i−1

(
Gε, L2(D)

)
≤ 22−i + 4Λa

1
2p i

− 1
2p ≤ c̃p(Λ2 + 1)

1
2 a

1
2p i

− 1
2p

for a suitable constant c̃p only depending on p. From this it is straightforward to
conclude that

ED∼P nei

(
Gε, L2(D)

)
≤ cp(Λ2 + 1)

1
2 a

1
2p i

− 1
2p

for all i ≥ 1, where cp is another constant only depending on p. Now observe that,
for f ∈ λ−1/2BH with gf ∈ Gε, we have ‖L ◦ f‖∞ ≤ 1 + ‖f‖∞ ≤ 1 + ‖f‖H ≤ 1 + Λ
and λ‖f‖2

H ≤ 1. From this it is easy to conclude that ‖gf‖∞ ≤ Λ + 3 =: B for
all gf ∈ Gε. Assuming without loss of generality that cp ≥

√
18 we hence find for

ã := c2p
p (Λ2 + 1)pa that ã ≥ B2p. Applying Theorem 3.5 and Λ2 + 1 = λ−1Λ2(ε, λ)

then yields the assertion.

Proof of Theorem 2.3: As already indicated after Lemma 3.3 we will apply The-
orem 3.1 with β := 1/2, b := 3λ−1/2, B := (A2(λ)

λ )1/2 + 2, w := 16c, and
W := 32cAϑ

2 (λ). To do so, we first observe that with these definitions we have

bεβ + B ≤ 3λ−1/2
(
ε1/2 + A

1/2
2 (λ) + λ1/2

)
≤ 3

√
3Λ2(ε, λ)

λ

and
wεϑ + W ≤ 32c

(
εϑ + Aϑ

2 (λ)
)
≤ 64 cΛϑ

2 (ε, λ) ,

12



where Λ2(ε, λ) is defined by (22). Moreover, Lemma 3.3 shows that all g ∈ Gε satisfy

EP g2 ≤ 16c

((
ε

λ

)1/2

+
(

A2(λ)
λ

)1/2

+ 1
)2−ϑ(

εϑ + 2Aϑ
2 (λ)

)
≤ 16

√
3c

(
ε + A2(λ) + λ

λ

)1−ϑ/2

4
(
ε + A2(λ)

)ϑ

≤ 64
√

3cλϑ/2−1Λ1+ϑ/2
2 (ε, λ) .

For τε := 64
√

3cλϑ/2−1Λ1+ϑ/2
2 (ε, λ), Lemma 3.6 together with (20) then yields a

constant Cp only depending on p and c such that

ωP,n(G(λ), ε) ≤ Cp max
{

λ
ϑ−ϑp−2

4 Λ
2+ϑ−ϑp

4
2 (ε, λ)

(a

n

) 1
2
,

(
Λ2(ε, λ)

λ

) 1
2 (a

n

) 1
1+p

}
.

Let us now restrict our considerations to ε that satisfy ε ≥ A2(λ) + λ. Then we
obviously have Λ2(ε, λ) ≤ 2ε and hence Condition (19) is satisfied for such ε, if

ε ≥ C̃p max
{

λ
ϑ−ϑp−2

4 ε
2+ϑ−ϑp

4

(a

n

) 1
2
,
( ε

λ

) 1
2
(a

n

) 1
1+p

, λ
ϑ−2

4 ε
2+ϑ

4

( τ

n

) 1
2
,
( ε

λ

) 1
2 τ

n

}
,

where C̃p is another constant only depending on p and c. Simple algebraic transfor-
mations then reveal that the latter is satisfied if

ε ≥ Kλ−1 max
{(a

n

) 2
2−ϑ+ϑp

,
(a

n

) 2
2+p

,
( τ

n

) 2
2−ϑ

,
( τ

n

)2
}

,

where K is yet another constant only depending on p and c. Applying Theorem 3.1
and n ≥ τ then yields the assertion.

The case q = 1

In view of the proof of Theorem 2.3 we first need to find analogues for Lemmas 3.2,
3.3, and 3.6. Let us begin with an analogue for the first:

Lemma 3.7 For 0 < λ ≤ 1, and f ∈ λ−1BH we define g := Cλ ◦ f − Cλ ◦ fP,λ,
where q is assumed to equal 1. Then we have g ∈ G(λ) and the following two bounds
hold:

‖g‖∞ ≤ 4 · EP g + A1(λ) + λ

λ
,

‖f‖H ≤ EP g + A1(λ)
λ

.

Proof: Let us fix an f ∈ H. Then we have

λ‖f‖H ≤ λ‖f‖H +RL,P (f)−R∗
L,P

= λ‖fP,λ‖H +RL,P (fP,λ)−R∗
L,P + EP g

= A1(λ) + EP g ,

13



and hence the second assertion follows. In order to show the first assertion, we
first observe that the Lipschitz continuity of L together with L(y, 0) ≤ 1 implies
L(y, t) ≤ 1 + |t| for all y ∈ Y and t ∈ R. By ‖ · ‖∞ ≤ ‖·‖H and the already proved
second assertion, we consequently obtain∥∥λ‖f‖H + L ◦ f

∥∥
∞ ≤ λ‖f‖H + 1 + ‖f‖∞ ≤ A1(λ) + EP g + 1 +

A1(λ) + EP g

λ

≤ 2 · A1(λ) + λ + EP g

λ
,

where in the last step we used 0 < λ ≤ 1. Since this inequality holds for all f ∈ H,
we then obtain the assertion.

The next lemma establishes a variance bound similar to Lemma 3.3.

Lemma 3.8 Let P be a distribution on X×Y and suppose that there exist constants
c ≥ 1 and ϑ ∈ [0, 1] such that the variance bound assumption (9) is satisfied for some
0 < λ < 1 and all f ∈ λ−1BH . Then for all g ∈ G(λ) we have

EP g2 ≤ 4 c

(
4 · EP g + A1(λ) + λ

λ

)2−ϑ(
(EP g)ϑ + 2Aϑ

1 (λ)
)
.

Proof: We use the shorthand notation E for EP and ‖ · ‖ for ‖ · ‖H . For g ∈ G(λ),
we begin by picking an f ∈ λ−1BH with g = Cλ ◦ f − Cλ ◦ fP,λ. Now observe that

Eg2 = E
(
λ‖f‖ − λ‖fP,λ‖+ L ◦ f − L ◦ fP,λ

)2

≤ 2E
(
λ‖f‖ − λ‖fP,λ‖)2 + 2E

(
L ◦ f − L ◦ fP,λ

)2

≤ 2λ2‖f‖2 + 2λ2‖fP,λ‖2 + 2E
(
L ◦ f − L ◦ fP,λ

)2

≤ 4E
(
L ◦ f − L ◦ f∗L,P

)2 + 4E
(
L ◦ f∗L,P − L ◦ fP,λ

)2 + 2λ2‖f‖2 + 2λ2‖fP,λ‖2.

We write C := max
(
‖f‖∞ + 1, ‖fP,λ‖∞ + 1

)
. Then the assumption (9) and aϑ +

bϑ ≤ 2(a + b)ϑ for all a, b ≥ 0, imply that

E
(
L ◦ f − L ◦ f∗L,P

)2 + E
(
L ◦ f∗L,P − L ◦ fP,λ

)2

≤ 2cC2−ϑ
(
E

(
L ◦ f − L ◦ f∗L,P

)
+ E

(
L ◦ fP,λ − L ◦ f∗L,P

))ϑ
.

Since λ‖f‖ ≤ 1, λ‖fP,λ‖ ≤ 1, and ϑ ≤ 1 we hence obtain

Eg2 ≤ 8cC2−ϑ
(
E

(
L◦f − L◦f∗L,P

)
+ E

(
L◦fP,λ − L◦f∗L,P

))ϑ
+2λ2‖f‖2+2λ2‖fP,λ‖2

≤ 8cC2−ϑ
(
E

(
L◦f− L◦f∗L,P

)
+E

(
L◦fP,λ− L◦f∗L,P

))ϑ
+4

(
λ‖f‖+λ‖fP,λ‖

)ϑ

≤ 16cC2−ϑ
(
E

(
L◦f − L◦f∗L,P

)
+ E

(
L◦fP,λ − L◦f∗L,P

)
+ λ‖f‖+ λ‖fP,λ‖

)ϑ

= 16cC2−ϑ
(
Eg + 2E

(
L◦fP,λ− L◦f∗L,P

)
+ 2λ‖fP,λ‖

)ϑ

≤ 16cC2−ϑ
(
(Eg)ϑ + 2Aϑ

1 (λ)
)

.
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Consequently, it remains to bound C on the right hand side of this inequality. To
that end, observe that Lemma 3.7 implies

‖f‖∞ ≤ ‖f‖H ≤ Eg + A1(λ)
λ

and
‖fP,λ‖∞ ≤ ‖fP,λ‖H ≤ A1(λ)

λ
≤ Eg + A1(λ)

λ
,

and hence we can bound

C =max
(
‖f‖∞ +1, ‖fP,λ‖∞ +1

)
≤ Eg + A1(λ)

λ
+ 1 .

Combining the estimates then yields the assertion.

Let us finally establish a bound on the expected Rademacher averages of the sets
Gε for the case q = 1. To this end we write

Λ1(ε, λ) := ε + A1(λ) + λ . (24)

Now the upper bound on the expected Rademacher averages reads as follows:

Lemma 3.9 Let n ∈ N, and assume that there are constants a ≥ 1 and p ∈ (0, 1)
such that (23) is satisfied. Then there exists a constant cp > 0 depending only on
p such that for all distributions P on X × Y , all λ ∈ (0, 1], ε ∈ (0, 1], and all
τε ≥ supg∈Gε

EP g2 we have

ED∼P nRadD(Gε, n) ≤ cp max
{

τ
1−p
2

ε

(
Λ1(ε, λ)

λ

)p(a

n

) 1
2
,
Λ1(ε, λ)

λ

(a

n

) 1
1+p

}
.

Proof: Lemma 3.7 shows that for all f ∈ λ−1BH with gf := Cλ ◦ f −Cλ ◦ fP,λ ∈ Gε

we have
‖f‖H ≤ A1(λ) + ε

λ
=: Λ .

Let us therefore write G̃ε := {λ‖f‖H +L◦f : f ∈ ΛBH} and H := {L◦f : f ∈ ΛBH}.
Now observe that λ‖f‖H ≤ 2 for all f ∈ ΛBH , and we find

e2i−1

(
Gε, L2(D)

)
≤ 2e2i−1

(
G̃ε, L2(D)

)
≤ 2ei

(
[0, 2], | · |

)
+ 2ei

(
H, L2(DX)

)
≤ 22−i + 4ei

(
ΛBH , L2(DX)

)
for all i ≥ 1 and all D ∈ (X × Y )n As in the proof of Lemma 3.6 we then conclude
that

ED∼P nei

(
Gε, L2(D)

)
≤ cp(Λ + 1)a

1
2p i

− 1
2p

for all i ≥ 1, where cp is a constant only depending on p. Now observe that, for
f ∈ λ−1BH with gf ∈ Gε, we have ‖L ◦ f‖∞ ≤ 1 + ‖f‖∞ ≤ 1 + ‖f‖H ≤ 1 + Λ
and λ‖f‖H ≤ 1. From this it is easy to conclude that ‖gf‖∞ ≤ Λ + 3 =: B for
all gf ∈ Gε. Assuming without loss of generality that cp ≥ 3, we hence find for
ã := c2p

p (Λ + 1)2pa that ã ≥ B2p. Applying Theorem 3.5 and Λ + 1 = λ−1Λ1(ε, λ)
then yields the assertion.
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Proof of Theorem 2.4: We will apply Theorem 3.1 with β := 1, b := 4λ−1,
B := 4A1(λ)+λ

λ , w := 4c, and W := 8cAϑ
1 (λ). To do so, we first observe that with

these definitions we have

bεβ + B = 4λ−1ε + 4 · A1(λ) + λ

λ
= 4 · Λ1(ε, λ)

λ

and
wεϑ + W = 4cεϑ + 8cAϑ

1 (λ) ≤ 16 cΛϑ
1 (ε, λ) ,

where Λ1(ε, λ) is defined by (24). Moreover, Lemma 3.8 shows that all g ∈ Gε satisfy

EP g2 ≤ 4 c

(
4 · ε + A1(λ) + λ

λ

)2−ϑ(
εϑ + 2Aϑ

1 (λ)
)

≤ 32c

(
ε + A1(λ) + λ

λ

)2−ϑ(
ε + 2A1(λ)

)ϑ

≤ 64cλϑ−2Λ2
1(ε, λ) .

For τε := 64cλϑ−2Λ2
1(ε, λ), Lemma 3.9 together with (20) then yields a constant Cp

only depending on p and c such that

ωP,n(G(λ), ε) ≤ Cp max
{

λ
ϑ−ϑp−2

2 Λ1(ε, λ)
(a

n

) 1
2
,
Λ1(ε, λ)

λ
·
(a

n

) 1
1+p

}
.

Let us now restrict our considerations to ε that satisfy ε ≥ A1(λ) + λ. Then we
obviously have Λ1(ε, λ) ≤ 2ε and hence Condition (19) is satisfied for such ε, if

ε ≥ C̃p max
{

λ
ϑ−ϑp−2

2 ε
(a

n

) 1
2
,
ε

λ
·
(a

n

) 1
1+p

, λ
ϑ−2

2 ε ·
( τ

n

) 1
2
,
ε

λ
· τ

n

}
,

where C̃p ≥ 1 is another constant only depending on p and c. Simple algebraic
transformations then reveal that the latter is satisfied if (14) is satisfied for

K := C̃
2

2−ϑ
p .

Applying Theorem 3.1 thus yields the assertion.

4 Appendix

In this appendix, we present the proofs of Theorem 2.1 and Lemma 2.2. Note that
Theorem 2.1 has been essentially established in [13, Chapter 7.5], while Lemma
2.2 is somewhat well-known for people familiar with s-numbers introduced below.
Nonetheless we feel that these results are not accessible enough for the statistical
learning theory community, so we decided to recompile their proofs in this appendix.

Let us begin by describing the connection between eigenvalues and entropy num-
bers for certain operators acting on a Hilbert space. To this end, let H1 and H2

be two (real) Hilbert spaces and S : H1 → H2 be a bounded linear operator. We
say that S is compact, if the closure of the image SBH1 is a compact subset of H2.
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We further denote the adjoint of S by S∗, i.e., S∗ is the operator which is uniquely
determined by the relation

〈Sx, y〉H2 = 〈x, S∗y〉H1 , x ∈ H1, y ∈ H2.

Recall that a bounded linear operator T : H → H is called self-adjoint if T ∗ = T , and
it is called positive if 〈Tx, x〉 ≥ 0. Given a bounded linear operator S : H1 → H2, it
is elementary to see that S∗S and SS∗ are self-adjoint and positive.

It is well-known that for compact, self-adjoint, and positive operators T : H → H
there exist an at most countable orthonormal system (ei)i∈I of H and a family
(λi(T ))i∈I such that λ1 ≥ λ2 ≥ · · · > 0 and

Tx =
∑
i∈I

λi(T )〈x, ei〉ei, x ∈ H. (25)

Moreover, {λi(T ) : i ∈ I} is the set of non-zero eigenvalues of T . In the following,
we assume that I is of the form I = {1, 2, . . . , |I|} if the cardinality |I| of I is finite.
In this case, we define λi(T ) := 0 for all i > |I|. Moreover, if |I| = ∞, we assume
without loss of generality that I = N. In both cases, we call (λi(T ))i≥1 the extended
sequence of eigenvalues of T .

Now observe that given a compact S : H1 → H2, the operator S∗S : H1 → H1 is
compact, positive, and self-adjoint, and hence it enjoys a representation of the form
(25) with non-negative eigenvalues. We write

si(S) :=
√

λi(S∗S) , i ≥ 1 , (26)

for the singular numbers of S, where (λi(S∗S))i≥1 is the extended sequence of eigen-
values of S∗S. Recall that S∗S and SS∗ have exactly the same non-zero eigenvalues
with the same geometric multiplicities, and hence we find si(S∗) = si(S) for all
i ≥ 1. Moreover, we have

s2
i (S) = λi(S∗S) = si(S∗S) , i ≥ 1, (27)

where in the second equality we used the fact that for compact, positive, and self-
adjoint T : H → H we have

si(T ) =
√

λi(T ∗T ) =
√

λi(T 2) = λi(T ) , i ≥ 1. (28)

Let us now consider another interesting property of the singular numbers. To this
end, let S : E → F be a bounded linear operator acting between arbitrary Banach
spaces E and F . For i ≥ 1, its i-th approximation number is then defined by

ai(S) := inf
{
‖S −A‖ : A ∈ L(E,F ) with rank A < i

}
, (29)

where L(E,F ) denotes the set of all bounded linear operators between E and F .
Obviously, (ai(S))i≥1 is decreasing, and if rank S < ∞, we also have ai(S) = 0 for
all i > rank S. Moreover, by diagonalization (see, e.g., Section 2.11 of [9]), one can
show that

si(S) = ai(S) (30)
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for all compact S ∈ L(H1,H2) acting between Hilbert spaces and all i ≥ 1. In
other words, singular and approximation numbers coincide for compact operators on
Hilbert spaces. Moreover, entropy numbers are also closely related to approximation
numbers. Namely, Carl’s inequality, see Theorem 3.1.2 in [3], states that for all
0 < p ≤ ∞ and 0 < q < ∞ there exists a constant cp,q > 0 such that

m∑
i=1

iq/p−1eq
i (S) ≤ cp,q

m∑
i=1

iq/p−1aq
i (S) (31)

for all bounded operators S : E → F acting between Banach spaces and all m ≥ 1.
In addition, [3, Theorem 3.1.2] shows that the same holds for the finite dimensional
`p,∞ norms, that is, for all 0 < p < ∞ there exists a constant only depending on p
such that

sup
i≤m

i1/pei(S) ≤ cp sup
i≤m

i1/pai(S) . (32)

In general, these inequalities cannot be inverted, but for Hilbert spaces H and
compact operators S : H1 → H2, we actually have the following strong inverse of
the above inequalities:

ai(S) ≤ 2ei(S) , i ≥ 1 . (33)

For a proof we refer to p. 120 in [3]. With these preparation we can now prove
Lemma 2.2:

Proof of Lemma 2.2: Let us define the operator Sk,µ : L2(µ) → H by

Sk,µg(x) :=
∫

X
k(x, x′)g(x′)dµ(x′) , g ∈ L2(µ), x ∈ X. (34)

Then it is easy to show that Sk,µ is the adjoint of the inclusion id : H → L2(µ), and
hence we have id : H → L2(µ) = S∗k,µ. Consequently, we obtain Tk,µ = S∗k,µ ◦ Sk,µ,
and by combining (27), (30), and (33) we obtain

λi(Tk,µ) = si(Tk,µ) = s2
i (S

∗
k,µ) = a2

i (id : H → L2(µ)) ≤ 4e2
i (id : H → L2(µ))

for all i ≥ 1. From this the inequality of the right hand side can be easily derived.
Analogously, Carl’s inequality (32) together with (30), (27), and (28) implies

c−1
p sup

i≤m
i1/pe2

i (id : H → L2(µ)) ≤ sup
i≤m

i1/pa2
i (S

∗
k,µ) = sup

i≤m
i1/pλi(Tk,µ)

for all m ≥ 1. Letting m →∞ then yields the assertion.

Lemma 2.2 shows that the entropy numbers ei(id : H → L2(µ)) and the eigen-
values λi(Tk,µ) are closely related to each other, and that this relation is indepen-
dent of the measure µ. This suggests that Theorem 2.1 can be proved once we
have established a relation between λi(Tk,µ) and the average random eigenvalues
ED∼µnλi(Tk,D). Fortunately, a sufficient result in this direction has already been
established by [11, 12] in the special case of continuous kernels over compact metric
spaces. Moreover, [21] generalized this result to bounded measurable kernels with
separable RKHSs. However, a close inspection of the proof of [21], see [13, Chapter
7.5], shows that the boundedness of the kernel k can be replaced by the weaker
assumption ‖k‖L2(µ) < ∞. The corresponding result reads as follows:
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Theorem 4.1 Let k be a measurable kernel on X with separable RKHS H and µ
be a probability measure on X such that ‖k‖L2(µ) < ∞. Then for all m ≥ 1 we have

ED∼µn

∞∑
i=m

λi(Tk,D) ≤
∞∑

i=m

λi(Tk,µ) . (35)

With the help of this theorem we can now establish a general inequality between
ei(id : H → L2(µ)) and ED∼µnei(id : H → L2(D)). As we will see below, the
assertion of Theorem 2.1 is a simple consequence of this general inequality.

Theorem 4.2 Let k be a measurable kernel on X with separable RKHS H and µ
be a probability measure on X such that ‖k‖L2(µ) < ∞. Then for all 0 < p < ∞ and
all 0 < q ≤ 2 there exists a constant cp,q ≥ 1 only depending on p and q such that
for all n ≥ 1, m ≥ 1, and M := min{m,n} we have

m∑
i=1

iq/p−1ED∼µneq
i (id : H → L2(D)) ≤ cp,q

M∑
i=1

iq/p−1

(
1
i

∞∑
j=i

e2
j

(
id : H → L2(µ)

))q/2

.

Proof: Carl’s inequality (31) shows that there exists a constant cp,q > 0 such that
for m,n ≥ 1 and all D ∈ Xn we have

m∑
i=1

iq/p−1eq
i (S

∗
k,D) ≤ cp,q

m∑
i=1

iq/p−1aq
i (S

∗
k,D) = cp,q

min{m,n}∑
i=1

iq/p−1aq
i (S

∗
k,D) ,

where in the last step we used that n ≥ rank S∗k,D implies ai(S∗k,D) = 0 for all i > n.
Moreover, for M := min{m,n} and M̃ := b(M + 1)/2c, we have

M∑
i=1

iq/p−1aq
i (S

∗
k,D) ≤

M̃∑
i=1

(2i− 1)q/p−1aq
2i−1(S

∗
k,D) +

M̃∑
i=1

(2i)q/p−1aq
2i(S

∗
k,D) .

If p ≤ q, the monotonicity of the approximation numbers thus yields

M∑
i=1

iq/p−1aq
i (S

∗
k,D) ≤ 2q/p

M∑
i=1

iq/p−1aq
2i−1(S

∗
k,D) ,

and if p > q we analogously find

M∑
i=1

iq/p−1aq
i (S

∗
k,D) ≤ 22+q/p

M∑
i=1

iq/p−1aq
2i−1(S

∗
k,D) ,

Using (30) and (26) we further see that a2
i (S

∗
k,D) = s2

i (S
∗
k,D) = si(S∗k,DSk,D) =

λi(Tk,D) for all i ≥ 1 and D ∈ Xn. Since q ≤ 2 we thus obtain

m∑
i=1

iq/p−1ED∼µneq
i (S

∗
k,D) ≤ c̃p,q

M∑
i=1

iq/p−1ED∼µnaq
2i−1(S

∗
k,D)

≤ c̃p,q

M∑
i=1

iq/p−1
(
ED∼µnλ2i−1(Tk,D)

)q/2
,
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where c̃p,q := 22+q/pcp,q. Now for each D ∈ Xn the sequence (λi(Tk,D))i≥1 is mono-
tonically decreasing and hence so is (ED∼µnλi(Tk,D))i≥1. By Theorem 4.1, we hence
find

i ED∼µnλ2i−1(Tk,D) ≤
2i−1∑
j=i

ED∼µnλj(Tk,D) ≤
∞∑
j=i

λj(Tk,µ)

for all i ≥ 1, and consequently we obtain

M∑
i=1

iq/p−1
(
ED∼µnλ2i−1(Tk,D)

)q/2 ≤
M∑
i=1

iq/p−1

(
1
i

∞∑
j=i

λj(Tk,µ)
)q/2

.

Moreover, by (26), (27), and (30), we have

λj(Tk,µ) = si(S∗k,µ ◦ Sk,µ) = s2
i (S

∗
k,µ) = a2

j (S
∗
k,µ) ≤ 4e2

j (S
∗
k,µ) ,

where in the last step we used (33). Combining the estimates above, we hence obtain

m∑
i=1

iq/p−1ED∼µneq
i (S

∗
k,D) ≤ 2q c̃p,q

M∑
i=1

iq/p−1

(
1
i

∞∑
j=i

e2
j (S

∗
k,µ)

)q/2

,

i.e., we have also shown the assertion.

Proof of Theorem 2.1: Since 0 < p < 2, it is easy to see that there exists a
constant c̃p such that

1
i

∞∑
j=i

e2
j (S

∗
k,µ) ≤ a2 · 1

i

∞∑
j=i

j
− 2

p ≤ c̃2
p a2 i

− 2
p

for all i ≥ 1. Using 1
p − 1 > −1, we hence find another constant c′p > 0 such that

for m ≥ 1 we have

m∑
i=1

i
2
p
−1

(
1
i

∞∑
j=i

e2
j (S

∗
k,µ)

)1/2

≤ c̃p a

m∑
i=1

i
1
p
−1 ≤ c′p am

1
p . (36)

Furthermore, for m̃ := b(m+1)/2c, the monotonicity of the entropy numbers yields

m̃
2
p ED∼µnem(S∗k,D) ≤

m∑
i=m̃

i
2
p
−1 ED∼µnei(S∗k,D) ≤

m∑
i=1

i
2
p
−1 ED∼µnei(S∗k,D) ,

and since m/2 ≤ b(m + 1)/2c = m̃, we hence obtain

ED∼µnem(S∗k,D) ≤ 41/pm
− 2

p

m∑
i=1

i
2
p
−1 ED∼µnei(S∗k,D) .

Combining this estimate with (36) and Theorem 4.2 for p̃ := p/2 and q := 1 then
yields first assertion.
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Although not needed for the analysis of this paper, we finally like to mention
another corollary of Theorem 4.2.

Corollary 4.3 Let k be a measurable kernel on X with separable RKHS H and µ
be a probability measure on X such that ‖k‖L2(µ) < ∞. Then for all 0 < p < 2 there
exists a constant cp ≥ 1 only depending on p such that for all n ≥ 1 we have

∞∑
i=1

i2/p−1ED∼µne2
i (id : H → L2(D)) ≤ cp

∞∑
i=1

i2/p−1e2
i (id : H → L2(µ)) .

Proof: For q = 2 the right-hand side of the inequality of Theorem 4.2 becomes

M∑
i=1

iq/p−1

(
1
i

∞∑
j=i

e2
j (S

∗
k,µ)

)q/2

=
M∑
i=1

i2/p−2
∞∑
j=i

e2
j (S

∗
k,µ) =

∞∑
i=1

∞∑
j=1

bi,j ,

where bi,j := 0 if i > min{j, M} and bi,j := i2/p−2e2
j (S

∗
k,µ) otherwise. Moreover,

rearranging the sums and using p < 2 yields a constant cp such that

∞∑
j=1

∞∑
i=1

bi,j =
M∑

j=1

j∑
i=1

i2/p−2e2
j (S

∗
k,µ) +

∞∑
j=M+1

M∑
i=1

i2/p−2e2
j (S

∗
k,µ)

≤ cp

M∑
j=1

j2/p−1e2
j (S

∗
k,µ) + cp

∞∑
j=M+1

M2/p−1e2
j (S

∗
k,µ)

≤ cp

∞∑
j=1

j2/p−1e2
j (S

∗
k,µ) .

Applying Theorem 4.2 then yields the assertion.
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